Tolerance to the substitution of buried apolar residues by charged residues in the homologous protein structures.
نویسندگان
چکیده
Occurrence and accommodation of charged amino acid residues in proteins that are structurally equivalent to buried non-polar residues in homologues have been investigated. Using a dataset of 1,852 homologous pairs of crystal structures of proteins available at 2A or better resolution, 14,024 examples of apolar residues in the structurally conserved regions replaced by charged residues in homologues have been identified. Out of 2,530 cases of buried apolar residues, 1,677 of the equivalent charged residues in homologues are exposed and the rest of the charged residues are buried. These drastic substitutions are most often observed in homologous protein pairs with low sequence identity (<30%) and in large protein domains (>300 residues). Such buried charged residues in the large proteins are often located in the interface of sub-domains or in the interface of structural repeats, Beyond 7A of residue depth of buried apolar residues, or less than 4% of solvent accessibility, almost all the substituting charged residues are buried. It is also observed that acidic sidechains have higher preference to get buried than the positively charged residues. There is a preference for buried charged residues to get accommodated in the interior by forming hydrogen bonds with another sidechain than the main chain. The sidechains interacting with a buried charged residue are most often located in the structurally conserved regions of the alignment. About 50% of the observations involving hydrogen bond between buried charged sidechain and another sidechain correspond to salt bridges. Among the buried charged residues interacting with the main chain, positively charged sidechains form hydrogen bonds commonly with main chain carbonyls while the negatively charged residues are accommodated by hydrogen bonding with the main chain amides. These carbonyls and amides are usually located in the loops that are structurally variable among homologous proteins.
منابع مشابه
Stabilization of internal charges in a protein: water penetration or conformational change?
The ionizable amino acid side chains of proteins are usually located at the surface. However, in some proteins an ionizable group is embedded in an apolar internal region. Such buried ionizable groups destabilize the protein and may trigger conformational changes in response to pH variations. Because of the prohibitive energetic cost of transferring a charged group from water to an apolar mediu...
متن کاملA procedure for the prediction of temperature-sensitive mutants of a globular protein based solely on the amino acid sequence.
Temperature-sensitive (Ts) mutants of a protein are an extremely powerful tool for studying protein function in vivo and in cell culture. We have devised a method to predict those residues in a protein sequence that, when appropriately mutated, are most likely to give rise to a Ts phenotype. Since substitutions of buried hydrophobic residues often result in significant destabilization of the pr...
متن کاملIsolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...
متن کاملVariability of the Cyclin-Dependent Kinase 2 Flexibility Without Significant Change in the Initial Conformation of the Protein or Its Environment; a Computational Study
Background: Protein flexibility, which has been referred as a dynamic behavior has various roles in proteins’ functions. Furthermore, for some developed tools in bioinformatics, such as protein-protein docking software, considering the protein flexibility, causes a higher degree of accuracy. Through undertaking the present work, we have accomplished the quantification plus analysis of the varia...
متن کاملProtein packing: dependence on protein size, secondary structure and amino acid composition.
We have used the occluded surface algorithm to estimate the packing of both buried and exposed amino acid residues in protein structures. This method works equally well for buried residues and solvent-exposed residues in contrast to the commonly used Voronoi method that works directly only on buried residues. The atomic packing of individual globular proteins may vary significantly from the ave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 53 4 شماره
صفحات -
تاریخ انتشار 2003